
[,--.- .

0

0

RELIABILITY OF A MULTICOMPUTER DISTRIBUTED

I OPERATING SYSTEM

FINAL SCIENTIFIC REPORT

By

Amnon Barak

August 1988

OT18 1980
DTID

wrnnn ,'rr1 nvpnnn H

DEPARTMENT OF COMPUTER SCIENCE

THE HEBREW UNIVERSITY OF JERUSALEM
JERUSALEM, ISRAEL

Apmoved i- P "1 1

Dwatlbuou UaJbMi~d R8 10 18 074

. . ..
. - . -,

l a. REPORT SECURITY CLASSIFICATION
lb. RESTRICTIVE MARKINGS

UNCLASSIFIED

Za. SECURITY CLASSIFICATION AUTHORITY
3. DISTRIBUTIONIAVAILABILITY OF REPORT

2b. DECLASSIFICATION
IDOWNGRADING

SCHEDULE
UNLIMITED

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(if applicable)
Hebrew University of Jerusalem

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Department of Computer Science
Jerusalem, 91904, ISRAEL

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

EOARD I
Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
223/231 Old Marylebone Rd. PROGRAM PROJECT TASK WORK UNIT
London NWI 5TH UK ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification)

Reliability of a multicomputer system

12. PERSONAL AUTHOR(S)
Prof. Barak

Ainon

13a. TYPE OF REPORT 13b. TIMI COVERED 14. DAIS OF REPORT (Year, Month, Day) 15. PAGE COUNT
Final Scientific FROM 67-8-1 TO 88-7-33__ 8

16. SUPPLEMENTARY NOTATION

The program manager is Mr. Mark Zonca, RADC

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-ROUP

/J
19. ABSTRACT .

The project on Reliability of a Multicomputer Distribu Operating System is a three-year research
effort in reliability and availability of multicomputer s stems with decentralized control. The maiA
objective of this project is to allow a loosely coupled etwork of computers to cooperate in order toprovide a general-purpose non-stop compu ng failt

The main issues involved with icrasing the I lLLre" bility are repicaion and multiple (con rrnt)

activities. This rport covers the third research y ~r. August 1, 987 to July 31, 1988. Duri*g this

/ \ period we investigated four main areas for increasing the reliability. First, we developed a set of algo-

" .r irithms for finding the global average load of a larg multicomputer system. The second part is asudy

_of afini~g system for a multicomputer with a 1ag number of disks. The third area is a performance

stud , of remote vs. local system calls in the distributed system. Th forth area is an effort to

develop mechanisms for supporting massive parallel tasks in a distributed environment. 1k9 , ,

2DISTRIBUTION IAVAILA IUTY O0 ABSTRACT .,' ABSTRA C SE UIY LA IIATO

r UNCLASIFIEOiUNLIMITED 0] SAME AS RPT. 0 ODTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL
22b. TELEPHONE (InClude Area Code) 22€. OFFICE SYMBOL

DO Form 1473, JUN 86e Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED
.,

co.-. - -~. .o. .

EOARD-TR - (2

This report has been reviewed by the OARD Information Office and is
releasable to the National Technical Information Service (NTIS). At NTIS it
will be releasable to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication.

PAR C. Ma. USZF
Chief, Applied Electronics

J SGR. HANSEN, Lt. Col, USAF
ut ommander

RELIABILITY OF A MULTICOMPUTER DISTRIBUTED OPERATING SYSTEM

FINAL SCIENTIFIC REPORT

By

Anmon Barak

August 1988

1. INTRODUCTION

Research in reliability of a multicomputer distributed operating system is an investigation into
the possibility of constructing a highly reliable multicomputer operating system for a cluster of loosely
coupled, independent computers that are interconnected by a local area communication network.

The key issue in reliability is redundancy. Through replication at every level of the hardware and
software systems, copies of files and processes have a higher probability of surviving partial failures
and thus allow non-stop operation of the system. One outcome of this approach is increased availabil-
ity, since several copies of the replicated object are available.

The main thrust of our current research is to develop a software layer, on top of the operating
system, in order to make intelligent system decisions. The areas which we considered for this layer
include reliability, recovery from partial network failure, support of atomic transactions, improved
communication and the support of parallel tasking.

The implementation of this software layer is based on the availability of MOS, a multicomputer
operating system which was developed by the investigator at the Hebrew University during the last
four years. The main characteristics of MOS which are applicable to the current research are:
1. Decentralized Control: Control decisions are made independently by each processor.
2. Network transparency: The network appears to the user as a single machine. Communicating

processes need not know if they are on the same processor or on different processors.
3. Multiprocessing Environment: Each processor provides a multiprocessing environment.

4. Logically Identical Processors: Application tasks may be assigned to any processor.
5. No Shared Components: No memory or other devices are shared between the processors.

6. LAN for Interconnection: No assumption is made about the topology of the network except
that it is connected.

7. Message Passing: Communication is achieved by messages.
8. Load balancing: MOS supports dynamic process migration for load balancing.
9. Dynamic Configuration: Allows a machine to join or leave the network at any time.

10. Compatibility with the UNIX user's interface:t
During the period covered by this report, Aug. 1, 1987 - July 31, 1988, work has been done in

the following areas:

i<

-3-

1. Algorithms for the global average load of a multicomputer system: a paper is now being written
to be submitted for publication.

2. A filing system for a very large multicomputer configuration: a paper was written and submitted
for publication. A summary follows below and copies of the paper are enclosed.

3. Performance of MOS: a thesis is currently being written on this subject. A summary of our
results follows below.

4. Support of replicated parallel tasks: a thesis which summerized our results was written and is
attached to this report. Also, a paper on this subject was accepted to the European UNIX systems
user group conference, to be held in Portugal, October 3-7, 1988.

A brief summary of each of these subjects follows below.

2. PROBABILISTIC ALGORITHMS FOR THE AVERAGE LOAD OF A MULTICOM-
PUTER

We develop probabilistic algorithms for estimating the global average load of a large scale,
loosely-coupled multicomputer system. These algorithms are useful for load balancing between the
nodes of the multicomputer. The algorithms are based on load messages which are transmitted asyn-
chronously between the nodes. Two methods for routing the messages are suggested. In the first case,
each node sends load messages to a randomly selected nodes. In the second method each node sends
load messages to a fixed set of prespecified nodes. We show that based on these messages, each node
can find an estimate for the global average load of the system, thus it can improve the overall perfor-
mance by making better scheduling decisions through load balancing.

Consider a multicomputer system having a large number of independent nodes that are intercon-
nected by a local area communication network. Throughout this work, a multicomputer system means
a set of autonomous computers (nodes) that communicate with each other by messages. Suppose that
the topology of the network allows a direct link between any pair of nodes, as for example in the Eth-
ernet communication network. Suppose that each node maintains in addition to its local load, an esti-
mate for the global average load and possibly load values of other nodes as well as their estimates of " TC

the global average load. Assume that this information is transmitted between the nodes in a manner
,which provides the most up-to-date loads and estimates to each node. The problem is then how to T)

route the load information among the nodes and how each node can determine the global average load
of the system based only on the information which is received by that node.

In this work we are interested in algorithms that can be used in a multicomputer system with a
large number of nodes. These algorithms must satisfy the following properties. First, we require uni-
formity; this means that all the nodes use the same algorithm, that there is no central control, that all
the nodes use the same unit of time and that each node is responsible to execute the algorithm
independently of the other nodes. We also require low communication overhead; therefore we do not
allow network broadcasts due to its high overhead, and we allow only short load messages. We also
assume that the number of nodes n is arbitrarily large and that no a priori information about the exe- I on For
cution time of the arriving processes is available. 'RA &I

One method to achieve load balancing is by finding the average load over all the nodes of the 8 C
system, then to migrate processes from nodes whose load are above the average into nodes whose load -need 0
are below the average. An alternative load balancing policy that on the average uses only one mes- &tIon
sage for each node, during each unit of time, was developed in [3]. In this case, load balancing is -

achieved by reduction of the variance of loads between pairs of nodes of the multicomputer. This pol-
icy does not need the average load but requires that each node maintains up-to-date information about ution/
the load of a (small) subset of other nodes. One disadvantage of this policy is the communication billty Code$

fal andnor
Dist poa

.4

overhead which results from possible suboptimal process migration between pairs of nodes whose
respective loads are below or above the global average load.

Due to the fluctuations of the values of the load at the nodes, an algorithm that finds the exact
average load is computationally expensive because it requires an instant reading of the load of all the
nodes. Alternatively, a suboptimal algorithm can be devised according to the observed state of the
system. Such an algorithm attempts to approximate the exact value of the average load with less
knowledge, and at a fraction of the cost that is required by an optimal algorithm.

In this work we propose a class of asynchronous algorithms by which each node can find an esti-
mate for the global average load. The main advantages of our algorithms are low communication over-
head and simplicity of the implementation, we only require that each node finds its local load, fol-
lowed by a simple computation of the node's estimate of the global average load and then the
transmission of this estimate to a subset of target nodes. We prove that by using this scheme, each
node can find an estimate for the global average load by monitoring the values of the received loads
and by correlating these values with its local load. As such, our algorithms are suitable for very large
multicomputer configurations, and they confirm the observation in [4] that simple algorithms that use
very small amounts of state information, can dramatically improve the performance of the system.

We suggest two alternative schemes for routing the load messages. first, we give a probabilistic
algorithm in which each node sends messages to randomly selected nodes. This algorithm is also
aimed to overcome node failures. Then, we present an algorithm in which each node sends messages
to a fixed, prespecified set of nodes. In both cases, we prove that the variance of the estimates for the
global average load, reduces during each unit of time and we also give the rate of this reduction.

3. PERFORMANCE OF A DISTRIBUTED SYSTEM
this project is concern with performance evaluation of MOS. In any system, performance is a

vital issue. For a distributed system, the performance of various mechanisms, e.g. remote procedure
calls or a memory mapping mechanism between local and remote machines, determines the feasibility
of the distributed system itself and the feasibility of other mechanisms, such as those used to make a
system reliable. For this reason, an extensive analysis of the mechanisms at the heart of the MOS sys-
tem and several MOS application programs was carried out.

3.1. Remote Kernel Procedure Calls
System calls define the basic interface between the user and the operating system. The overhead

associated with the remote execution of system calls has a significant influence on the performance of
the MOS system. In MOS, system calls can be divided into three groups: system calls with no remote
implementation, system calls with scall versions which use the funnel mechanism and system calls
with scall versions which do not use the funnel mechanism.

3.1.1. Measurement Technique
The remote system calls overhead was measured by running a set of benchmarking programs.

Each of the benchmarks measures the elapsed time required for local and remote execution of a sys-
tem call that has a remote implementation. Each system call is executed 10,000 times on objects
located on the local node and 10,000 times on remote objects. The system calls measured are all part
of the standard UNIX interface. The measurements were done when the remote and the local nodes
were running in single user mode to reduce interference from uninvolved processes.

3.1-2. Results
The benchmarks determine the slowdown associated with a remote kernel procedure call which

is computed as the elapsed time required for the remote execution of the call divided by the elapsed

41

-5-

time required for the local execution. It should be noted that the design of the MOS kernel allows for
certain system calls to be executed locally regardless of the current position of the calling process.
This type of system call has no overhead, that is a slowdown factor of 1.0. Using the relative fre-
quency of the system calls, the weighted average of the slowdown of system calls was computed to be
2.4. Although comparing these results to measurements done on other distributed systems is of dubi-
ous value, the results show the the MOS RPC mechanism is one of the more efficient ones.

3.2. Interprocess Communication Mechanisms

In order to utilize the processing power of a distributed system, a distributed application is bro-
ken into several subtasks which can run in parallel. In addition to the time required for the computa-
tion of the task, each of a distributed application's subtasks must use some form of interprocess com-
munication (IPC) mechanism to communicate with the other processes working on a given task. The
cost of the IPC is a critical factor in determining the performance of a distributed application.

The IPC mechanisms used in MOS are really a subset of the system call interface described
above and showed a similar slowdown factor, the average slowdown for the different mechanisms is
around 2.3. The measurements showed the importance of using a distributed IPC mechanism:
mechanisms, like the current initial of AT&T System V messages, which store messages on one
machine, create a serious 1/0 bottleneck which hinders the scaling ability of distributed applications.
By distributing the message storage structures at random between available machines, the perfor-
mance of distributed applications which make heavy use of message passing was considerably
improved.

3.3. Process Migration and Networking
The MOS load balancing algorithms use the dynamic migration mechanism to evenly redistri-

bute processes from loaded to less loaded machines. Distributed applications, simply create several
subprocesses with the standard UNIX fork mechanism and the load balancing mechanism sees to the
even distribution of the processes throughout the system. This section first describes the performance
of the implementation of the funnel mechanism and then the speed of process migration.

3.3.1. The Lower Layer of the Network

In any distributed system, performance is highly dependent on the speed of the physical network
and the networking protocols implemented. In MOS, the user has no explicit access to the network.
The linker uses the network to implement the following functions: process migration, funnels and
remote kernel procedure calls. The speed of the physical network is determined by the hardware used:
the Pronet token passing ring has a throughput of 10 Mbit/second (1,250 Kbytes/second).

3.3.2. The Funnel Mechanism
The funnel mechanism typifies the network related mechanisms. Therefore, analysis of the net-

working protocols centers on measurements of the data throughput of the funnel mechanism. Local
memory to memory copies are ten times as fast as a network read. The throughput over the network
was 112 Kbytes/second. The time spent in the upper kernel does not have a significant impact on the
throughput, in fact it accounts for only 3 percent of the time spent.in the transaction.

One attempt to improve the throughput involved removing the Pronet driver's checksum which
is done on every message sent. Although the current network hardware requires that the error check-
ing be done in software, future generations of hardware will be able to do this by themselves. An
added advantage of not doing a checksum is a reduction in the number of message queues maintained
by the Pronet driver by one. Without the checksum, throughput was increased to 164 Kbytes/second,
an increase of 46 percent. At this rate, a two machine transaction utilizes 13.12% of the Pronet's max-
imum bandwidth.

-6.

3.3.. Process Migration
The process migration mechanism is built upon the remote kernel procedure call mechanism and

the funnel mechanism. Remote procedure calls are used to request that a new procedure entry is set up
at the remote site and to start .-xecution of the migrated process on the remote machine after the
migration completes. Funnels are used to transfer the procedure's text, data and stack regions. Not
surprisingly, the throughput of process migration is closely tied to the performance of the funnel
mechanism: the measured throughput is 114.77 Kbyte /second which is slightly better than that of the
transfer rate of the funnel mechanism.

3.4. Distributed Applications
The preceding sections of this work measured the slowdown factor-associated-widt various low

level mechanisms of MOS. This section measures the speedup factor of distributed applications when
run on the MOS system. The speedup factor is computed to be the minimum time the application
requires on a one processor system divided by the time required on a many processor system. The
optimal speedup of an application is linear, that is an application should have a speedup of k when run
on a k processor system.

The nature of an application determines what kind of speedup can be obtained. Two types of
applications were measured. The first application measured, a parallel version of the UNIX make,
does a large amount of disk 10 as well as computation. Without modification, each of the 60 subgoals
which could run in parallel during the execution of the parallel had some measure of TO with the
machine where the application started running. In this case, the speedup obtained with a four machine
configuration reached on 40% of the optimal. By distributed the temporary files created by each of
these subgoals randomly between the working nodes, the 10 bottleneck was eliminated and the
speedup obtained reached 60% of the optimal.

Other applications, like the implementation of the Traveling Salesman Problem, are basically
CPU bound and obtained speedups that were roughly optimal. The basic performance of the message
passage mechanism was changed as described above which added a slight performance improvement.

4. A HOLOGRAPHIC FILE SYSTEM FOR A MULTICOMPUTER WITH MANY DISKS
We present a "holographic" file system (HES) for concurrent data retrieval in a computer system

with a large number of disks (although it is probable that most nodes will be diskless). In such a file
system it is possible to operate on a file by simultaneously utilizing many (or all) of the disks, since
the file system is organized to take advantage of the multiplicity of equipment, rather than limiting
access to a single disk for each file, as in most existing file systems. The main advantages of the HFS
are a speed-up in data retrieval related to the number of disks, and improved availability by allowing
access to parts of a file even when other parts of that file are not accessible.

Future computing needs, such as in the management of large amounts of data, will require
unified computing systems consisting of a large number (possibly thousands) of loosely coupled,
independent computers (nodes), interconnected by a communication network, without shared memory
or shared devices. With so many processors, however, no one processor can "know" the state of the
entire system (because of the overhead and possible congestion in trying to keep it up to date), and we
shall no longer be willing to shut down the entire system because of the failure of one or a few proces-
sos. The "operating system" for such a configuration must be completely distributed, in some reason-
able sense, and it must account for processors dropping out of the system and returning at some later
time, possibly with obsolete control information and/or obsolete data.

Unfortunately, existing operating systems are unable to handle more than several dozens of
nodes, due to the fact that many commonly used mechanisms and internal algorithms lead to conges-
tion when used in a configuration beyond a certain size. One bottleneck in most multicomputer

o.

systems is due to the use of a traditional file-system organization, in which all the records of each file
are placed in a single disk. The main drawback of such an organization is that it does not take advan-
tage of the multiplicity of the hardware components by allowing parallel operations on files. Future
systems, particularly systems with a large number of disks, must find a way to speed up the access
time to files; in particular, by encouraging parallel access to many records simultaneously.

In this work we present an organization for a file system that scatters records of a file into
different nodes, in order to allow parallel read/write operations of different records. The advantages of
this organization includes (a) the elimination of the restriction that a file system reside in a single par-
tition of a disk, (b) enhanced throughput due to concurrent accessing of the same file system by many
processors, (c) the possibility of better disk-drive load balancing, and (d) increases the availability of
files and allows operations on files even when portions of the data are inaccessible due to disk or node
crashes.

The fundamental assumption that we make is that in future systems many, perhaps most, of the
node machines in a large configuration will not have disks. Thus, almost every fie-related operation
will be performed to or from a remote file server. While there is often concern over the relative cost of
remote file access over local access, in Lazowska et al, it is argued that "with a well-designed file
server ... the cost of remote file access is reasonable even for substantial numbers of client worksta-
tions." In effect, then, the holographic file system may be regarded as a redesign of the traditional file
server so that queuing delays and congestion problems are minimized, or avoided altogether.

A technical report with the complete paper is enclosed.

5. DISTRIBUTED LIGHT WEIGHT PROCESSES FOR MOS

Distributed systems integrate a set of loosely coupled processors, each with its own local
memory, into a single machine environment. In the distributed systems model, various user processes
may run concurrently on different machines and possibly communicate to achieve a common goal.
This form of concurrency encourages a programming style that uses large grain-size computation
blocks. Such distributed programs consist of a set of execution entities (called threads or tasks) that
perform considerable amount of work independently and communicate infrequently through messages.
Threads are a convenient way of expressing concurrent programs and therefore, many programming
languages embody thread-like entities in their syntax, e.g. Occam [IN84a] and Linda [ACG86]. How-
ever, the overhead of handling processes by the operating system is costly. For instance, it has been
noted that the UNIX processes are heavy-weight in that they carry much associated state information.
Therefore, operations on them (e.g. context switching) are slow.

Light Weight Processes (LWP) has been suggested by Kepes [Kep85] as a programming tool for
supporting cooperating processes on a uniprocessor. In the LWP mechanism suggested by Kepes, a
runtime support library provides the coroutine primitives within a single, heavy-weight-process
(HWP). Another alternative for supporting LWPs is at the kernel level. On a multiprocessor, the ker-
nel support version has a primary advantage of allowing real parallelism. One of the most recent
operating system kernels that support LWPs is Mach [ABG86J. However, none of the kernel or user
level LWP mechanisms provide concurrency in distributed environments.

The Distributed Light Weight Processes mechanism (DLWP) is a facility for supporting distri-
buted programs in MOS. The goal of the Distributed Light Weight Processes mechanism is to be able
to exploit concurrency in a distributed environment. The mechanism is designed to be able to support
a variety of application types by supporting processes as a programming tooL It exploits concurrency
up to the level available in the system and provides additional, virtual concurrency through time shar-
ing. In this way, it can be used both for efficient utilization of concurrency and for experimenting with
large scale concurrnt programs.

The DLWP mechanism is implemented immediately above the operating system kernel level, in
the form of a user-level runtime library. It extends the uniprocessor Light Weight Processes

~-8-

* mechanism through a new operation, split, which adapts the classical Light Weight Processes mechan-
ism for distribution and dynamically disperses the workload among processors. A LWP pod within a
HWP may split to create multiple pods that execute in different HWPs. The MOS dynamic load
balancing (BaS85] automatically assigns the HWPs to different machines and provides concurrency.

The partitioning strategy takes into consideration past behavior of the LWPs, in terms of CPU
consumption and communication. This profile information is used to reach a partition that splits the
load evenly while incurring minimum communication overhead. For this purpose, the profile informa-
tion is kept in a graph and a heuristic graph partitioning algorithm is employed.

The main features of the mechanism are:

dynamic configuraion
The mechanism utilizes memory and CPU according to the application's needs In particular, the
binding of threads to CPUs is done dynamically by splitting at runtime. This property relies on
the ability of the underlying operating system to dynamically assign processes to processors. In
the current implementation, the MOS dynamic load balancing facility provides the required
flexibility.

massive parallelism
The mechanism is designed to provide massive support of parallelism, free from the hardware
constraints. The threads may be scheduled in a time-sharing scheme when they exceed the
available concurrency in the system. Thus, the only limit on their number is their total consump-
tion of memory.

applicability
The mechanism provides services via a set of general purpose interface routines. This set may
be easily modified or added to, e.g. to allow different communication styles. This allows the
mechanism to support a variety of parallel programming languages in providing the underlying
runtime support for precompiled programs. For example, an occam support package has already
been implemented on top of a single machine LWP system [MaS86] and is now being ported to
MOS to use the DLWP mechanism.

portability
The DLWP library is written on a UNIX compatible system, in a high level programming
language (c).

REFERENCES

[ABG86] M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian and M. Young, Mach: A New
Kernel Foundation for UNIX Development, Technical Report, Carnegie Mellon Univer-
sity, August 1986.

[ACG86j S. Ahuja, N. Carriero and D. Gelemter, Linda and Friends, Computer 19(8), Aug 1986, pp.
26-34.

[BaS85] A. Barak and A. Shiloh, A Distributed Load Balancing Policy for a Multicomputer, IEEE
Software - Practice and Experience 15(9), Sep 1985, pp. 901-913.

[Kep85] J. Kepes, Lightweight Processes for UNIX Implementation and Application, in Usenix
technical conference proc. , Usenix Association, Portland, Or, Summer 1985, pp. 299-308.

(MaS86] D. Malki and G. Shwed, A Unix OCCAM+ System, Technical Report CS-87-7, Hebrew
University of Jerusalem, Jerusalem, If, June 1986.

[MaS861 D. Malki and G. Shwed, Unix OCCAM+ Compiler, User Manual, Hebrew University of
Jerusalem, Jerusalem, 1, Jan 1986.

